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1 Intrinsic vs. Extrinsic Geometry and The Metric Tensor Illus-
trated

We illustrate the metric tensor as a mathematical book-keeping device which accounts for the variable change
necessary in converting “ground-distance” to “hiking-distance” in a topographical map. Calculations are done
in topographical maps to re-enforce the intuitive explanation given of intrinsic and extrinsic geometry.

Last Updated: Monday, April 24, 2023 - 15:05:56.

2 Imagine Collecting the Following Materials:

(1) a flat piece of thick, gray construction paper,

(2) a thin piece of pink, semi-transparent tracing paper,
(3) and a yellow spotlight. .. on the lens of which. ..

(4) ...you have drawn a star in black Sharpie pen.

## Error in knitr::include_graphics(c("./Images/IntrinsicvExtrinsic-GrayPaper.png", : Cannot find the f

3 Imagine Using These Collected Materials:
e Clear a space to work in your messy office or bedroom.
e Lay the gray construction paper on the floor or a desk.
e To get some practice with a pair of scissors you have found, you cut the pink tracing paper into a circle.

e Now, in one hand, hold this pink circle above the gray paper but between the spotlight which you hold
in your other hand.

e With this setup, as seen in Figure 77, you notice that the star on the flashlight casts a star-shaped shadow
onto not only the semi-transparent pink tracing paper but also through onto the gray construction
paper below.

## Error in knitr::include_graphics(c("./Images/IntrinsicvExtrinsic-StarOnPlane.png")): Cannot find the

## Error in knitr::include_graphics(c("./Images/IntrinsicvExtrinsic-StarOnPlane.png")): Cannot find the



4 While searching the internet for interesting shapes...

You happen upon a shape called a Helicoid (seen in Figure 1) which, on a first pass, looks like just a twisted
version of a piece of paper. You find, however, that you are unable to construct this twisted shape from a
single piece of pink tracing paper without creating wrinkles or tears. However, with a significant amount
of time, patience, scissors, and glue, you are able to construct a reasonable approximation of this helicoid
from many small pieces of pink paper. With this newly constructed helicoidal shape, you set up your shadow
casting apparatus again. This time, as you rotate the resulting helicoid around its central axis in space, you
notice that the spotlight illuminates only the portions of the surface that are accessible to the light.
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Figure 1: You Want Your Paper to Take the Shape of this “Helicoid”.






Figure 2: Shadow As a Projection. Only the parts of the surface that come into contact with
the light rays (vertical dotted lines) coming from the spotlight are illuminated.



5 Extrinsic Geometry in the Shadow-Casting Context:

This situation, in essence, reflects the Extrinsic Geometry of the surface, namely, features of the surface
can be exposed by some external methods of space. That is, the shadow cast onto the surface exists only
because the spotlight was first present in space to create the light which then interacted with the surface
itself in space to create this shadow. Any questions we wish to ask about the surface (for example, those
distance and angle questions in Figure 3) can be asked instead of the shadow cast onto this surface from
the spotlight in space. These questions about the shadow on the surface can then be answered with the
understanding that the tools and techniques of space are at our disposal (e.g. rulers, tape measures, and
string to find lengths and protractors to measure angles).

6 An Experiment with Photosensitive Paper:

Given your success constructing a helicoid out of tracing paper, you decide to repeat the construction with
yellow, photosensitive paper. Repositioning the star above this new construction, you leave the photosensitive
paper to develop an image while you go and get coffee. Upon returning some time later, you find the following
image imprinted onto the helicoid as seen in Figure 4 which prompts some natural questions. Some time
later, sufficiently tired from constructing and thinking about how to make distance and angle computations
without spatial tools you fall asleep wondering about the meaning of Intrinsic Geometry...

(... and this is what you dream...)

a star \once remembered \easily forgotten

a supernova \ captured \ nuclear afterimage
yourself \ miniscule \ trapped in crepuscular corona
perception\ sun-blinded \ claustrophobic

fate\ restricted \ a struggle to know more

Upon waking you realize that a way to make sense of your dream is to imagine yourself being trapped as a
photographic image onto a helical surface made of photosensitive paper, and that in this transference you retain
no knowledge of your prior existence in three-dimensional space. While this seems rather claustrophobic,
you at least have retained the ability to move within the surface using your two remaining degrees of
freedom (known to a 3D spatial observer as the width and vertical directions of the helicoid, but known to
you the photographic inhabitant as simply v (moving across or left/right in the surface) and u (moving
forward/backward on the surface), respectively.

## Error in knitr::include_graphics(c("./Images/IntrinsicvExtrinsic-YellowPaper.png", : Cannot find the

7 Intrinsic Geometry in Photographic Terms:

Intrinsic Geometry then are those features of the surface that can be discovered while being “photographi-
cally embedded” into the surface. Intrinsic geometry requires that knowledge of surface be discovered using
intrinsic tools that are developed with no reference to or knowledge of the surfaces prior extrinsic existence
in space. Intrinsic tools should be constructed from knowledge of the variables u and v and special functions
thereof (for example, the metric tensor gqp).

It turns out that, as hinted at in Figure 5, despite a transference to the photographic paper, special knowledge
of an intrinsic object called the metric tensor g4 can be obtained, which allows one to compute lengths and
angles in this new, restricted (intrinsic) surface environment defined by the vectors 9; = 0,, and 9, = 0.



Figure 3: Questions We Wish to Ask About the Surface Like the Distance Between Two Points
A and B Along a Path 1 -> 2 -> 3 -> 4 or Like the Measure of One of the Angles of a Projected
Triangle on a Surface Can Be Answered Using the Shadow Cast Onto This Surface From the
Spotlight in Space. These questions can be answered with rulers, string, and protractors which
are some tools of space.
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Figure 4: Instead of Transparent Pink Tracing Paper, Procure Some Yellow Photosensitive
Paper. Leave this photosensitive paper exposed to the spotlight, and you will find the star
photographically imprinted onto the helicoidal, photosensitive paper. The star now rotates
with the helicoid as the star is now inseparable from the surface itself.



Example (part 1 of 2): Intrinsic Computations for the Helicoid

v = ( v ) p= ( 52-.31315 )

X sin(u) sinh(v) cos(u) sinh(v) cosh(v) sin(u)
&' (u%) == | y| = | -cos (u) sinh(v) |, éf(, = | sin(u) sinh(v) -cos(u) cosh(v)
z u 1 0

(0110 |X| Y| Xy |Y1)p==

2,3700 -3.4000 0.8050 1.3500 0.8050 1.3500
-3.3010 -2.4400 1.1030 0.3439 1.1030 0.3439
1.0000 0.0000 -0.1050 0.1250 -0.1050 0.1250

0.8050 1.3500
Xr=| 1.1030 |=-0.10500,+-0.31000,, Y;=|0.3439 |=0.12500,+-0.31000,
-0.1050 0.1250
cosh? (v) 0 17.5100 0.0000
3= (9ap) p=
0 COShZ(V) 0.0000 17.5100

g (Xr,Yr) = (gpX"YP) p=1.45307
9(Xq,Xp) = (0opX°XP) ,=1.87598 = |X;p|=g(Xq,X;)/2=1.36966
g(Yr, Y1) =(gesY°YP) ,=1.95654 = |Y;|=g(Y,Yy)/2=1.39877

(X7Yp=cos 19501 40,6723
e [¥x |

-~

Notice that the vectors X and Y being projected are already in the surface since X = Xt and Y = Y.




Example (part 2 of 2): Intrinsic vs. Extrinsic (Lengths and Angles)

[\ v
-~

Extrinsic Distance: de(a,b)=f] /(7 (t),7(t)) dt=10.6 Intrinsic Angle: «£1X,Y=cos—1(g(X,Y)/IX||Y])=41°

8 A Step, Skip, and a Jump Towards Metrics. ..

Using the metric tensor of the Helicoid (as seen in Figure 5) to compute lengths and angles intrinsically
in the surface is not yet that satisfying as we have not yet developed the intuition behind the concept of
Metrics. To develop this intuition and to step, skip, and jump towards the concepts of intrinsic geometry
and the metric tensor, consider the illustration of a race shown in Figure 6.

9 Metrics Definition. ..

According to one definition of Metrics obtained from the internet:
Metrics (/metriks/)

(...a method of measuring something) Each race contestant (the intrinsic observers) had a different
method for measuring the length of the race based on their chosen racing mode or metric (6steps or 4skips or
3jumps). In contrast, the race fans (the extrinsic observers) had their own metric in the form of the race
markers on the outside of the track (12ft).

10



The inner product on space and the metric tensor provide the means by which lengths and angles
are computed. For example, the dotted curve shown above can be represented intrinsically (1*) and
extrinsically (r') as the 2D and 3D vector—valued functions

1(t) = 1%eq = (u(t),v(t)) = (1.55 + 2.55t,2.1),
r(t) =rle; = ®(1(t))e; = (4.02sin(1.55 + 2.55t), —4.02 cos(1.55 + 2.55t), 1.55 + 2.55t),

where 1(t) is simply the straight line 1(t) = A - (1 —t) + B - t between the points A = (1.55,2.1) and
B = (4.1,2.1). That is, intrinsically the curve on the helicoid looks to an inhabitant of the surface
to be a line, while to a 3D extrinsic observer it looks to be the curved arc r(t). The vectors X and
Y (which lie directly along the edges of the corner of the star) at the point P = (x,y,z) = ®(u,v) =
®(5.335,2.11) = (—3.301,—2.369,5.335) also have intrinsic (X*) and extrinsic (X*) descriptions,

X = X'e; = (0.805,1.103, —0.105) = —0.1059,, — 0.313,, = X,
Y =Yg = (1.35,0.3439,0.125) = 0.1253,, — 0.319, = YP25.

The computations /(f, T) = /84711, g(X,Y) = gxpX*YB, and |X| = 1/gueX*XP from the previous
example yield, by integration and inverse trig operations, the distance and angle shown above. Easier

to compute, however, is the intrinsic distance J'; \/g“ﬁi“iﬁ dt =+/17.51-2.55-2.55 -1 = 10.6.

Figure 5: Screenshots of Intrinsic Computations with the Metric Tensor. Details to follow in
the additional resources (Apple Book, YouTube Video, etc.) to this post.

(...the results obtained from this) This form of the definition is interesting as it can help us see the
race, not really as a race, but as a means of dividing up the track into smaller parts. Imagine every time one
of the contestants foot touches the ground (after a Step, a Skip, or a Jump) that a line across the track is
made visible for the fans. By the end of the race, we might then see something like shown in Figure 8 or that
seen from a top view in Figure 9.

10 A Variable Metric and Race Summary:

Imagine now that one race fan (extrinsic) decides that they want to be a fourth contestant in what they
know to be the 12ft race. As a now contestant (intrinsic) they decide to mix and match the race modes (fixed
metrics) from the previous contestants into their own varying metric as shown in Figure 10. To summarize
the four race completion strategies we have:

o (Stepper, Step Metric) 6steps

e (Skipper, Skip Metric) 4skips

e (Jumper, Jump Metric) 3jumps

e (Former Observer, New Contestant, Variable Metric) 2skips, 1step, and ljump

Because the New Contestant was a Former Observer who had the extrinsic knowledge that lstep=2ft,
1skip=3ft, and 1jump=4f, it follows that the contestants as a group are able to compare their intrinsic metrics
(steps, skips, jumps, variable) to the extrinsic metric (ft) to see that they have all actually traveled the same
distance of 12ft:

e (Stepper)

2ft
bsteps - ——— =6 2ft = 12ft
1step

11



Distance. Conversion:
b S*‘epg = | Ft

H Skips = |dft
|4 ft

SmePs=

Figure 6: Imagine a Race with Three Contestants: The first (blue) contestant is a Stepper, which
means they can only take Steps towards the finish line. The second (black) contestant is a Skipper, and thus
wants to try to complete the race with Skips. The third (pink) contestant is a Jumper who is sure that this
athletic ability will allow them to win the race. The race begins! According to one outside (extrinsic)
observer in the crowd, they see a straight track that is 12ft in length which the blue contestant completes by
taking 6steps at 2ft per step. To a second outside observer the black contestant complete the race in 4skips
at 3ft per skip, while a third observer watches in amazement as the jumper complete the course in just 3
jumps at 4ft per jump. The contests tie!. They all completed the 12ft course at the same time albeit with
different racing methods (or Metrics).

12



Dictionary

Definitions from Oxford Languages - Learn more
Search for a word

o Mmetrics

['metriks/

All Prosody Physics Mathematics

noun

1. the use or study of poetic meters; prosody.

2. a method of measuring something, or the results obtained from this.
"the report provides various metrics at the class and method level"

Figure 7: Metrics Definition: a method of measuring something, or the results obtained from
this.

I :
{Md‘rias |_egend: |
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SR

= 1sKp
}/\: 1 yump
Distance. Conversion:

b Steps =14 Ft

Y sKips = a1t
(— 12ft

SmeP

Figure 8: Imagine the Race as a Means of Dividing the Track into Smaller Parts.
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Figure 9: Top View of Track Divided into Smaller Parts Using Three Fixed Metrics

o (Skipper)

=4.3ft =12ft
1skip

4skips -

e (Jumper)

3jumps - =3 -4ft = 12ft

4ft
Tjump
e (Variable)

= 6ft + 2ft + 4ft
= 12ft

The concept of a variable metric extends from the length of a racetrack to distances traveled on a curved
surface. The surface can be viewed as a mountainous park as seen in Figure 11

14
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Figure 10: Top View of Track Divided into Smaller Parts Using A Variable Metric
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11 Imagine a Surface as a Mountainous Park:

In this next several sections we introduce and motivate the idea of the metric tensor g4p of a surface using
the, perhaps, more familiar concept of the topographical map the surface.

Figure 11: Imagine a Surface as a Mountainous Park.

12 Imagine A Mountainous Park as a Topographical Map:

To make a topographical map of a surface, consider drawing many planes of constant elevation. As seen in
Figure 12, the intersection of these planes with the surface create the constant elevation or contour curves of
the surface. Drawing many contour curves together on a single plot is the topographical map of the surface
as seen for example in Figure 13

13 The Park Could Have Many Sections and Many Trails:

The section on the park you have chosen to go to has three possible trails. In an effort to be prepared for
whichever trail you might use, you have brought a variety topographical maps of a varying degrees of detail
of the different regions as seen in Figure 14 which are shown in the context of the park itself in Figure 15.
Imagine the whole mountainous park to be the size of your topographical maps and imagine the trails shown
by their trail marker colors (Red for the Peak Trail, Purple for the Mountain Loop Trail, and Blue for the
Valley Loop Trail).

16



Figure 12: Creating a Topographical Map of a Surface. Step 1: Draw many planes of varying,
constant elevations. Here the elevations are set to be every 2 units on the z-axis. Step 2:
Where these planes intersect the surface become the curves of constant elevation (contour
curves). Crossing from a contour curve to one other (next) contour curve means you have
changed elevation by 2 units of vertical distance.

28
10

-2 y
R

Figure 13: Step3: Drawing many contour curves together on a single plot is a topographical
map of the surface. The spacing of the contour curves in this topographical map correspond
to a vertical change of 2 units of distance.

17
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14 The Walking Distances Between Points on the Mountain De-
pends on the Trail:

The computation of distances between points on the mountainous surface along different paths can be

accomplished using the data contained in the corresponding topographical maps. Understanding the spacing

of the constant elevation (or contour) curves of the surface is a key to the metric tensor g4p of the surface,
and therefore the computation of distances between points along paths.

15 How to Incorrectly Compute Walking Distance to Tip-Top of
Peak Trail (and What You Could Try Instead):

Walking the Peak Trail to the TipTop seen in Figure 17 presents a great opportunity to show how to
incorrectly compute walking distance using the Pythagorean Theorem as illustrated in Figure 18. Recall the
Pythagorean Theorem (for computing the length of the hypoteneuse, c¢) of a right triangle whose leg lengths

19
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Figure 14: You Have a Variety of Topographical Maps of the Area. The topographical maps of
the park show flattened versions of the surrounding hilly terrain. On these maps, the colors

and numbers correspond to the elevations above or below the parks office (which is considered
to be elevation 0).
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Figure 15: The Relationship of the Topographical Map to the Surface. Imagine the whole
mountainous park to be the size of your map and imagine the trails shown by their trail
marker colors (red for the Peak Trail, purple for the Mountain Loop Trail, and blue for the
Valley Loop Trail). Hiking the red Peak Trail means following the red dotted path on the
topographical map which will take you to high (red) elevations around 8 above the park office.
Hiking the purple Mountain Loop means following the purple dotted path on the map with
some elevations in the yellow range around 5 above the park office. The blue Valley Loop
follows the blue dotted path on the map which leads to some elevations in the blue range
around 3 below the park office.
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PEAK TRAIL: Elevation = 9.20, DistanceAlongGround = 1.34, DistanceAlongHill = 9.67
MOUNTAIN LOOP TRAIL: Elevation = 4.93, DistanceAlongGround = 3.86, DistanceAlongHill = 7.25

VALLEY LOOP TRAIL: Elevation = -2.99, DistanceAlongGround = 4.01, DistanceAlongHill = 13.66
-1 '

N

Figure 16: Distance Computations Between Points on the Surface Can Be Accomplished Using
the Elevation Data in the Corresponding Topographical Map.

22



areaand b

c=+Vva2+b2,

PEAK TRAIL: Elevation = 9.92, DistanceAlongGround = 1.50, DistanceAlongHill = 10.41
MOUNTAIN LOOP TRAIL: Elevation = 0.00, DistanceAlongGround = 0.00, DistanceAlongHill = 0.00
VALLEY LOOP TRAIL: Elevation = 0.00, DistanceAlongGround = 0.00, DistanceAlongHill = 0.00

10

Figure 17: Walking the Peak Trail to the Tip-Top Shows a Total Walking Distance of 10.41
units.

16 Trail Distances Can Be Approximated Using Repeated
Pythagorean Theorem:

A common problem solving strategy in mathematics is to reduce a complicated problem (like the exact
distance measurement problem) into smaller, less complicated problems (like the problem of finding the
length of a single line segment). The trade off in solving these less complicated problems is that there
are usually many, many of these smaller problems to need to be “re-assembled” to find final answer to the
complicated problem (like needing to add the lengths of many line segments together to get a total curve
length).

23



PEAK TRAIL: Elevation = 9.92, DistanceAlongGround = 1.50, DistanceAlongHill = 10.41
MOUNTAIN LOOP TRAIL: Elevation = 0.00, DistanceAlongGround = 0.00, DistanceAlonmgHill = 0.00
VALLEY LOOP TRAIL: Elevation = 0.00, DistanceAlongGround = 0.00, DistanceAlongHill = 0.00

y

-3 -2 -1 0
10

Figure 18: In Trying to Understand Where a Total Walking Distance of 10.41 Comes From, It
is Incorrect to Just Use the Pythagorean Theorem. Using this method in this case undercom-
putes the walking distance.

24



PEAK TRAIL: Elevation = 9.92, DistanceAlongGround = 1.50, DistanceAlongHill = 10.41
MOUNTAIN LOOP TRAIL: Elevation = 0.00, DistanceAlongGround = 0.00, DistanceAlongHill = 0.00
VALLEY LOOP TRAIL: Elevation = 0.00, DistanceAlongGround = 0.00, DistanceAlongHill = 0.00

-1 0

ljou would gel chuer o 1041

f wow i P, cean Thm .
1.3@, .E, 13 t+imes

Figure 19: In Trying to Understand Where a Total Walking Distance of 10.41 Comes From, It
Would Be More Correct to Use the Pythagorean Theorem Multiple Times.
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PEAK TRAIL: Elevation = 7.36, DistanceAlongGround = 2.00, DistanceAlongHill = 13.21
MOUNTAIN LOOP TRAIL: Elevation = -5.02x 10”7, DistanceAlongGround = 6.28, DistanceAlongHill = 19.43
VALLEY LOOP TRAIL: Elevation = -0.00, DistanceAlongGround = 6.28, DistanceAlongHill = 20.72

) - y

Figure 20: Walking All the Trails and Exact Distances. For the Time Being, Assume These
Exact Distance Measurements Come From the Pedometer Readings of Your Smart Watch.
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PEAK TRAIL: Distance AlongHillApprox = 11.94
MOUNTAIN LOOP TRAIL: Distance AlongHillApprox = 18.63
VALLEY LOOP TRAIL: Distance AlongHillApprox = 17.59

Hill Segment Hill Segment
Lengths (Approx.) Lengths (Approx.)
0.927 0.730
2.162 1.200
3.080 0.722
2.401 0.691 1.776
7.278 3.905 1.104
2.262 1.183 2.912
0.760 1.954
0.956 3.794
3.927 4.442

Figure 21: Approximate Distances by Dividing the Trails Into Many Straight-Line Segments.
The Lengths of Straight Lines are Straight-Forward (pun intended).
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PEAK TRAIL: DistanceAlongHillApprox = 12.74
MOUNTAIN LOOP TRAIL: DistanceAlongHill Approx = 18.79
VALLEY LOOP TRAIL: Distance AlongHillApprox = 19.09 E)d'Yi ASic Calenatrion:

. . - . -~ I . P2(1,-1,55) (pontinsque)
| ‘ ; QE(1-15,2)  (point inspace)

I PRx6-¢-(0,~05,45) lvecio?ruu:)
\P?Q\* Lengih of Vecks

= [Fosy s ® 442

c
°”BC="“‘“"
[y

Hill Segment Hill Segment

Lengths (Approx.) Lengths (Approx.)

0.503 0.709

1.401 0.941

1.725 0.680

2.279 0.504

0.887 1.155 1.070

5.005 1.488 1.270

3.045 0.695

2.608 0.514 1.816

0.000 1.498 2.481

D Cll — 0.549 0.578

0.892 2.796

"’0‘[‘0‘15 +D |3\-7"i 2.307 3.842

1.739 1.406

19.09 19-79

Figure 22: Extrinsic Computations for the Lengths of Vectors in Space are Performed with
Pythagorean’s Theorem.
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17 The Smaller the Line Segments Used the Better the Trail Dis-
tance Approximation:

PEAK TRAIL: =17.36, =2.00, PEAK TRAIL: DistanceAlongHill Approx

; ~ ) ~ x MOUNTAIN LOOP TRAIL: DistanceAlongHIlTApprox = 19.35
HOUNTAINLOOS TRV Eleymtten 22 02= 107 =628, =N VALLEY LOOP TRAIL: DistanceAtongHillApprox =
VALLEY LOOP TRAIL: = h = -

= -2 -1 o
-3 -2 -1 0 1Main Math Tdea ¥
. =N — 77 1 The jredu the numbec of
— 5 2
Line segments woed the.
Better the distance aperok Hill Segment Hill Segment
engths (Approx. ths g

Totals +o
I (YT
S e | close to 1321

Figure 23: (A Common Problem Solving Strategy) The Exact Distance Measurements Along the
Trails on the Mountainous Surface (left) Can Be Approximated by Adding the Lengths of Many
Straight-Line Segments (right). The More Segments Used the Better the Approximation.

18 Find Walking Distances on Trails Using Contour Lines:

19 Towards a Variable Distance Metric for Tip-Top Peak Trail. . . Similar
to the Step, Skip, Jump Race

This section illustrates the connection between the variable metric idea introduced in section A Variable
Metric and Race Summary: with a variety of topographical map calculations. By dividing the trail
into sequentially smaller segments on which we perform extrinsic calculations for elevation gains and hiking
distances, we create a reasonable approximation of a variable metric on the Peak Trail which motivates a
more detailed treatment of in section The Metric Tensor:.

20 The Metric Tensor:

In this section we transition from extrinsic to intrinsic calculations of distance by using the metric tensor as
a scale factor which converts “along-the-ground-distance” to “along-the-trail-distance”. We see that as the
number of trail segments increases, then intrinsic and extrinsic computations of distance converge to each
other.

The metric tensor gp of a surface written as z = f(x,y) is the matrix

Jup = <911 912) _ <] +f§ fxfy >
B = =
921 922 fufy 1415
where f, and fy are the partial derivatives of the surface equation z = f(x,y) with respect to x and y. In the

case of our mountainous park, the z-values (or elevations) can be obtained by (x,y) location in the park by
the equation
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PEAK TRAIL: Distance AlongHillAppox = 11.31
MOUNTAIN LOOP TRAIL: DistanceAlongHillAppox = 18.90

VALLEY LOOP TRAIL: Distance AlongHillAppox = 18.59 o ‘P—Q) \: digkrnce on hivl
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Figure 24: Distances Along Line Segments of the Trails are Found with Repeated Application
of the Pythagorean Theorem (to compute the Length of the Hypotenuse).
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PEAK TRAIL: Distance AlongHillApprox = 10.380

Segment

Elevations
Lengths
(Approx.)
0.229 0.229
0.423 0.477
1.173 1.537
1.938 3.438
2.378 5.799
2.270 8.064
1.580 9.644
0.392 10.030

Figure 25: Consider the Segment Length Data for the Tip-Top Trail: This Length Data Partly
Required Extrinsic Knowledge of the Elevation Data.
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PEAK TRAIL: DistanceAlongHill Appox = 10.120

c ing = 0.7

Segments Segment Elevations
Lengths
Number
(Approx.)
1 1.058 1.058
2 5.540 6.517
3 3.518 10.030

Figure 26: Consider the Segment Length Data for the Tip-Top Trail (0.7 Contour Spacing, 3
Segments with Spacing 0.5).
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PEAK TRAIL: Distance AlongHillAppox = 10.350

c Spacing = 0.7

Segments Segment Elevations
Lengths
Number
(Approx.)
1 0.269 0.269
2 0.959 0.999
3 2.285 3.219
4 3.081 6.280
5 2.697 8.972
6 1.062 10.030

Figure 27: Consider the Segment Length Data for the Tip-Top Trail (0.7 Contour Spacing, 6
Segments with Spacing 0.25).
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PEAK TRAIL: DistanceAlongHill Appox = 10.410

C pacing = 0.7
Segments Segment Elevations
Lengths
Number
(Approx.)
1 0.042 0.042
2 0.041 0.083
3 0.039 0.122
4 0.035 0.157
5 0.032 0.188
6 0.030 0.214
7 0.031 0.237
8 0.035 0.256
9 0.044 0.276
10 0.055 0.300
11 0.069 0.334
12 0.084 0.382
13 0.100 0.450
14 0.118 0.539
15 0.136 0.651
16 0.154 0.785
17 0.173 0.942
18 0.192 1.120
19 0.210 1.319
20 0.229 1.537
21 0.246 1.776
22 0.264 2.032
23 0.280 2.306
24 0.295 2.596
25 0.309 2.901
26 0.322 3.219
27 0.334 3.549
28 0.343 3.889
29 0.351 4.238
30 0.358 4,593
31 0.362 4.953
32 0.365 5.315
33 0.365 5.679
34 0.363 6.040
35 0.360 6.399
36 0.354 6.751
37 0.346 7.096
38 0.336 T7.431
39 0.324 7.755
40 0.310 8.064
41 0.294 8.358
42 0.276 8.634
43 0.257 8.891
44 0.236 9.127
45 0.214 9.341
46 0.190 9.531
47 0.165 9.696
48 0.140 9.835
49 0.113 9.948
50 0.087 10.030

Figure 28: Consider the Segment Length Data for the Tip-Top Trail (0.7 Contour Spacing, 50
Segments with Spacing 0.03).
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f(x,y) = —10 cos®(x) sin® (y) + cos(x) sin(y) cos? (y)
+ 2sin(x) sin(y)(cos(x) sin(y) + 1)?
+ 3sin(x) sin(y) cos(y)

from which the the metric tensor gup(x,y) follows at any point in the park (x,y). This matrix is quite
complicated due to the complicated nature of the terrain. However, the metric tensor along the Peak Trail
given by the points (x,y) = (0,y) can be reduced to simply to a function of y

_(9n(y) 912(9))
go‘ﬁ(y)_<91z(y) 922(y))’

where

g11(y) = (2sin(y)(sin(y) + 1)* + 3sin(y) cos(y))2 +1
gizly) = (coss(y) — SZSinz(y) cos(y))
- (2sin(y)(sin(y) + 1) + 3sin(y) cos(y))

g22(y) = (cos3(y) 7325in2(y) cos(y))2 + 1.

The Figures 29 and 30 show that intrinsic computations of (hill) segment length can be obtained from ground
distance Ay and (the square root of) the metric tensor 1/g22(y) by a scale factor formula:

Hill Segment Length = Ay - v/g22(y).

The Peak Trail, because of its constant southerly heading (with no east-west deviation), is an ideal example
to use since only one component of the metric tensor is needed g, for scaling. Intrinsically computing the
walking distance on this specific trail nicely illustrates the metric tensors role as a mathematical book-keeping
device accounting for the variable change necessary in converting “ground-distance Ay” to “hill-distance,
Ay - v/g22(y)”. The metric tensor stores intrinsically all the information necessary to ensure that extrinsic
computations of distance match the intrinsic distance.

Figure 31 shows that as Ay decreases to 0 (and therefore the number of segments increases to co) the intrinsic
and extrinsic segment lengths begin to converge. So too then do the trail distances converge (aka the totals
of the segments lengths).
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PEAK TRAIL: DistanceAlong

Appox = 10.410

=0.5, ing= Ay=0.03
Segment Segment Segment Flévation
Number Value Lengths aty
(n) (y=-n-ay) (Approx.)
0.042 0.042
0.041 0.083
0.039 0.122
0.035 0.157
0.032 0.188
0.030 0.214
0.031 0.237
0.035 0.256
0.044 0.276
0.055 0.300
0.069 0.334
[ 0.084 0.382
4 0.100 0.450
: ©.118 0.539
0.136 0.651
b4 0.154 0.785
3 0.173 0.942
0.192 1.120
; 0.210 1.319
. 0.229 1.537
: 0.246 1.776
° 0.264 2.032
0.280 2.306
: 0.295 2.596
0.309 2.901
B ! 4y=6.03 0.322 3.219
0.334 3.549
0.343 3.889
0.351 4,238
0.358 4.593
0.362 4,953
0.365 5.315
0.365 5.679
0.363 6.040
0.360 6.399
©.354 6.751
0.346 7.096
0.336 7.431
0.324 7.755
0.310 8.064
0.294 8.358
0.276 8.634
0.257 8.891
0.236 9.127
0.214 9.341
0.190 9.531
. 9.696
<] 9.83
9.948
10.030

Figure 29: Definitions of y, Ay, and Az Needed to Extrinsically Compute Segment Lengths.
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Segment Segment Segment Scaling via Metric Segment
E € 8 Elevation e g

. T Number Value Length ot Tensor at y Length

mgh'\c ens oy (n) (y=-n-ay)  (Extrinsic) d (Vg22) (Intrinsic, /g2 -ay)

‘For 1 ~0.03 0.042 0.042 1.393 0.042

2 -0.06 0.041 0.083 1.332 0.040

2'*'9(7“ 3 -0.09 0.039 0.122 1.238 0.037

= 1 4 ~0.12 0.035 9.157 1.129 0.034

5 -0.15 0.032 0.188 1.033 0.031

‘F T _F,_F 6 -0.18 0.030 9.214 1.002 0.030

|+ % 3 7 -0.21 0.031 0.237 1.086 0.033

= 8 ~0.24 0.035 9.256 1.306 0.039

T 9 ~0.27 0.044 0.276 1.639 0.049

@ _f _I: [ -\»-F 10 -0.3 0.055 9.300 2.057 0.062

xTy Y 11 ~0.33 0.069 0.334 2.537 0.076

12 -0.36 0.084 0.382 3.065 0.092

13 -0.39 0.100 9.450 3.627 0.109

14 ~0.42 0.118 9.539 4.217 0.127

= 3 0 ﬁu_ 15 -0.45 0.136 9.651 4.826 0.145

16 -0.48 0.154 9.785 5.447 0.163

17 -0.51 0.173 0.942 6.074 0.182

18 -0.54 0.192 1.120 6.699 0.201

‘SH ﬂl—L 19 -0.57 0.210 1.319 7.317 0.220

20 -0.6 0.229 1.537 7.921 0.238

21 ~0.63 0.246 1.776 8.506 0.255

22 ~0.66 0.264 2.032 9.065 0.272

23 -0.69 0.280 2.306 9.593 0.288

4y=0.03 24 -0.72 0.295 2.596 10.080 0.303

Nri 25 -0.75 0.309 2.901 10.530 0.316

26 ~0.78 0.322 3.219 10.940 0.328

V#(cosﬁ(y) -32sin?(y) cos(y) )2+ 1 27 -0.81 0.334 3.549 11.290 0.339

28 -0.84 0.343 3.889 11.590 0.348

29 -0.87 0.351 4.238 11.830 0.355

‘li"' @ y=-14 A -0.9 0.358 4.593 12.010 0.360

> 31 -0.93 0.362 4.953 12.120 0.364

:{(w;(_pn\-usi;(‘-l ) aos k! '")) “] 32 -0.96 0.365 5.315 12.170 0.365

33 -0.99 0.365 5.679 12.150 0.364

34 ~1.02 0.363 6.040 12.060 0.362

= 333963 % 3.340 35 -1.05 0.360 6.399 11.900 0.357

36 ~1.08 0.354 6.751 11.670 0.350

l A a7 =111 0.346 7.096 11.370 0.341

. M 38 -1.14 0.336 7.431 11.010 0.330

Ag" 0.03 4 onj Qo ‘ 39 ~1:17 0.324 7.755 10.570 0.317

Mgnce wnils | ae -1.2 0.310 8.064 10.080 0.302

41 -1.23 0.294 8.358 9.516 0.285

_ , . 42 -1.26 0.276 8.634 8.899 0.267

Jﬂm—.%.a'fo hl“ A“J““"Q 43 ~1.29 0.257 8.891 8.227 0.247

44 ~1.32 0.236 9.127 7.504 0.225

5rowf~& \S¥ 45 -1.35 0.214 9.341 6.736 0.202

46 ~1.38 0.190 9.531 5.928 0.178

I_' ’ 47 ~1.41 0.165 9.696 5.087 0.153

A% j‘l = D.|00 h'“‘!d- 48 ~1.44 0.140 9.835 4,221 0.127

49 =T 0.113 9.948 3.340 9.100

50 -1.5 0.087 10.030 2.464 0.074

Figure 30: Definition of Metric Tensor g,z and Computing Intrinsic Distance as Metric Tensor
Scaling ,/g;2 of Ay. Note that the scale factor is variable based on the segment number it is
applied to!
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Segment Segment Segment Scaling via Metric Segment

Number Value Length Elevation Tensor at y Length
L. at y
(n) (y=-n-Ay) (Extrinsic) (/822) (Intrinsic, +/g22 -4Yy)
1 -0.01 0.014 0.014 1.412 0.014
2 -0.02 0.014 0.028 1.405 0.014
3 -0.03 0.014 0.042 1.393 0.014
4 -0.04 0.014 0.056 1.377 0.014
5 -0.05 0.014 0.070 1.356 0.014
6 -0.06 0.013 0.083 1.332 0.013
7 -0.07 0.013 0.096 1.304 0.013
8 -0.08 0.013 0.109 1.272 0.013
9 -0.09 0.013 0.122 1.238 0.012
10 -0.1 0.012 0.134 1.202 0.012
11 -0.11 0.012 0.145 1.166 0.012
12 -0.12 0.011 0.157 1.129 0.011
13 -0.13 0.011 0.168 1.093 0.011
14 -0.14 0.011 0.178 1.061 0.011
15 -0.15 0.010 0.188 1.033 0.010
16 -0.16 0.010 0.197 1.013 0.010
17 -0.17 0.010 0.206 1.001 0.010
18 -0.18 0.010 0.214 1.002 0.010
19 -0.19 0.010 0.222 1.015 0.010
20 -0.2 0.010 0.229 1.043 0.010
21 -0.21 0.011 0.237 1.086 0.011
22 -0.22 0.011 0.243 1.145 0.011
23 -0.23 0.012 0.250 1.219 0.012
24 -0.24 0.013 0.256 1.306 0.013
25 -0.25 0.014 0.263 1.406 0.014
26 -0.26 0.015 0.269 1.517 0.015
27 -0.27 0.016 0.276 1.639 0.016
28 -0.28 0.017 0.283 1.771 0.018
29 -0.29 0.018 0.291 1.910 0.019
30 -0.3 0.020 0.300 2.057 0.021
31 -0.31 0.021 0.310 2.211 0.022
32 -0.32 0.023 0.321 2.372 0.024
33 -0.33 0.025 0.334 2.537 0.025
34 -0.34 0.026 0.348 2.709 0.027
35 -0.35 0.028 0.364 2.884 0.029
36 -0.36 0.030 0.382 3.065 0.031
37 -0.37 0.032 0.403 3.249 0.032
38 -0.38 0.033 0.425 3.436 0.034
39 -0.39 0.035 0.450 3.627 0.036
40 -0.4 0.037 0.477 3.821 0.038
41 -0.41 0.039 0.507 4.018 0.040
42 -0.42 0.041 0.539 4,217 0.042
43 -0.43 0.043 0.574 4.418 0.044
44 -0.44 0.045 0.611 4.621 0.046
45 -0.45 0.047 0.651 4.826 0.048
46 -0.46 0.049 0.693 5.032 0.050
47 -0.47 0.051 0.738 5.239 0.052
48 -0.48 0.053 0.785 5.447 0.054
49 -0.49 0.056 0.835 5.656 0.057
50 -0.5 0.058 0.887 5.865 0.059

38



Segment Segment Segment Scaling via Metric Segment

Number Value Length Elevation Tensor at y Length
.. at y
(n) (y=-n-Ay) (Extrinsic) (/E22) (Intrinsic, /g2 -AY)
51 -0.51 0.060 0.942 6.074 0.061
52 -0.52 0.062 0.999 6.283 0.063
53 -0.53 0.064 1.058 6.491 0.065
54 -0.54 0.066 1.120 6.699 0.067
55 -0.55 0.068 1.184 6.906 0.069
56 -0.56 0.070 1.250 7.112 0.071
57 -0.57 0.072 1.319 7.317 0.073
58 -0.58 0.074 1.389 7.520 0.075
59 -0.59 0.076 1.462 7.722 0.077
60 -0.6 0.078 1.537 7.921 0.079
61 -0.61 0.080 1.615 8.119 0.081
62 -0.62 0.082 1.694 8.314 0.083
63 -0.63 0.084 1.776 8.506 0.085
64 -0.64 0.086 1.859 8.696 0.087
65 -0.65 0.088 1.945 8.882 0.089
66 -0.66 0.090 2.032 9.065 0.091
67 -0.67 0.092 2.122 9.245 0.092
68 -0.68 0.093 2.213 9.421 0.094
69 -0.69 0.095 2.306 9.593 0.096
70 -0.7 0.097 2.401 9.761 0.098
71 -0.71 0.098 2.498 9.925 0.099
72 -0.72 0.100 2.596 10.080 0.101
73 -0.73 0.102 2.696 10.240 0.102
74 -0.74 0.103 2.798 10.390 0.104
75 -0.75 0.105 2.901 10.530 0.105
76 -0.76 0.106 3.005 10.670 0.107
77 -0.77 0.107 3.111 10.810 0.108
78 -0.78 0.109 3.219 10.940 0.109
79 -0.79 0.110 3.328 11.060 0.111
80 -0.8 0.111 3.438 11.180 0.112
81 -0.81 0.112 3.549 11.290 0.113
82 -0.82 0.113 3.661 11.400 0.114
83 -0.83 0.114 3.775 11.500 0.115
84 -0.84 0.115 3.889 11.590 0.116
85 -0.85 0.116 4.004 11.680 0.117
86 -0.86 0.117 4.121 11.760 0.118
87 -0.87 0.118 4.238 11.830 0.118
88 -0.88 0.119 4.355 11.900 0.119
89 -0.89 0.119 4.474 11.950 0.120
90 -0.9 0.120 4.593 12.010 0.120
91 -0.91 0.120 4,712 12.050 0.121
92 -0.92 0.121 4.832 12.090 0.121
93 -0.93 0.121 4.953 12.120 0.121
94 -0.94 0.121 5.073 12.140 0.121
95 -0.95 0.122 5.194 12.160 0.122
96 -0.96 0.122 5.315 12.170 0.122
97 -0.97 0.122 5.436 12.170 0.122
98 -0.98 0.122 5.558 12.160 0.122
99 -0.99 0.122 5.679 12.150 0.121
100 -1. 0.121 5.799 12.130 0.121

21 One Could Always Use Extrinsic and Intrinsic Arc-Length In-
tegrals:

For those with some experience in Calculus who wish not to “sum-up” the many, many intrinsic or extrinsic

segment lengths to get an approximation of total trail distance, you can always compute some integrals.

e (Extrinsic) Describe the mountainous park as a surface in space using r(x,y) = (x,y, f(x,y)) where

f(x,y) = —10cos>(x) sin® (y) + cos(x) sin(y) cos? (y)
+ 2sin(x) sin(y)(cos(x) sin(y) + 1)2

+ 3sin(x) sin(y) cos(y).
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Segment Segment Segment Scaling via Metric Segment

Number Value Length Elevation Tensor at y Length
.. at y
(n) (y=-n-4y) (Extrinsic) (\822) (Intrinsic, /g2 -Ay)
101 -1.01 0.121 5.920 12.100 0.121
102 -1.02 0.121 6.040 12.060 0.121
103 -1.03 0.120 6.160 12.010 0.120
104 -1.04 0.120 6.280 11.960 0.120
105 -1.05 0.119 6.399 11.900 0.119
106 -1.06 0.119 6.517 11.830 0.118
107 -1.07 0.118 6.635 11.750 0.118
108 -1.08 0.117 6.751 11.670 0.117
109 -1.09 0.116 6.867 11.580 0.116
110 -1.1 0.115 6.982 11.480 0.115
111 -1.11 0.114 7.096 11.370 0.114
112 -1.12 0.113 7.209 11.260 0.113
113 -1.13 0.112 7.321 11.140 0.111
114 -1.14 0.111 7.431 11.010 0.110
115 -1.15 0.109 7.540 10.870 0.109
116 -1.16 0.108 7.648 10.720 0.107
117 -1.17 0.106 7.755 10.570 0.106
118 -1.18 0.105 7.859 10.410 0.104
119 -1.19 0.103 7.963 10.250 0.102
120 -1.2 0.102 8.064 10.080 0.101
121 -1.21 0.100 8.164 9.895 0.099
122 -1.22 0.098 8.262 9.709 0.097
123 -1.23 0.096 8.358 9.516 0.095
124 -1.24 0.094 8.452 9.317 0.093
125 -1.25 0.092 8.544 9.111 0.091
126 -1.26 0.090 8.634 8.899 0.089
127 -1.27 0.088 8.722 8.681 0.087
128 -1.28 0.086 8.807 8.456 0.085
129 -1.29 0.083 8.891 8.227 0.082
130 -1.3 0.081 8.972 7.991 0.080
131 -1.31 0.079 9.051 7.750 0.078
132 -1.32 0.076 9.127 7.504 0.075
133 -1.33 0.074 9.201 7.253 0.073
134 -1.34 0.071 9.272 6.997 0.070
135 -1.35 0.069 9.341 6.736 0.067
136 -1.36 0.066 9.407 6.471 0.065
137 -1.37 0.063 9.470 6.202 0.062
138 -1.38 0.061 9.531 5.928 0.059
139 -1.39 0.058 9.588 5.651 0.057
140 -1.4 0.055 9.644 5.371 0.054
141 -1.41 0.052 9.696 5.087 0.051
142 -1.42 0.049 9.745 4.801 0.048
143 -1.43 0.047 9.792 4.512 0.045
144 -1.44 0.044 9.835 4.221 0.042
145 -1.45 0.041 9.876 3.928 0.039
146 -1.46 0.038 9.913 3.634 0.036
147 -1.47 0.035 9.948 3.340 0.033
148 -1.48 0.032 9.979 3.046 0.030
149 -1.49 0.029 10.010 2.753 0.028
150 -1.5 0.026 10.030 2.464 0.025

Figure 31: Intrinsic and Extrinsic Segment Lengths Converge as Ay — 0. In this case, Ay = 0.01.
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The equation of the peak trail as a curve in 3D is then

r(t) = r(0,t) = (0, —t, —sin(t) cos?(t) + 10sin>(t)).

The speed of the curve (or length of the velocity vector) is

2

() ='(t) - v/ (1) = \/(— cos3(t) + 32sin?(t) cos(t)) +1

from which it follows that the arc-length element ds (or the distance traveled at speed |v(t)| for a short
moment in time dt) is given by ds = |v(t)|dt.

Integrating ds from t =0 to t = 1.5 yields a total trail distance of

1.5 1.5 2
J ds = J \/(— cos3(t) 4 32sin?(t) cos(t)) + 1 dt =10.4083.
0 0

e (Intrinsic) An intrinsic calculation of distance will yield the same value 10.4083 and will look something
like what is shown in Helicoid example in Section Intrinsic Geometry in Photographic Terms:
in Figure 5.

22 More To Follow Soon In Additional Resources:
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Example: Metric Tensor for Surface of Sphere of Radius p Equal 1

Figure 32: More Technical Details of the Metric Tensor to Follow in the Additional Resources
Section of this Post.
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